If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(H)=-16H^2+576
We move all terms to the left:
(H)-(-16H^2+576)=0
We get rid of parentheses
16H^2+H-576=0
a = 16; b = 1; c = -576;
Δ = b2-4ac
Δ = 12-4·16·(-576)
Δ = 36865
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{36865}}{2*16}=\frac{-1-\sqrt{36865}}{32} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{36865}}{2*16}=\frac{-1+\sqrt{36865}}{32} $
| 2r2+9r+4=0 | | -5=1-4m+3m | | 3(2x+1)=93 | | -4(x+4)=-56 | | 14x-12=2(7x6 | | 7a+5a=6+24 | | -6(1-4n)=90 | | 6-2b=-18 | | 2(x+6)(3x-9)=0 | | 3(v+2)=-3v+48 | | 2x62-11x+5=0 | | F(n)=10n-8 | | y^2-40=7y | | 180-4m=160+6m | | 9+15/x=3 | | -19-7x=2 | | -7(x+4)=-28 | | 3x+12=−5x+52 | | 70-2x-2x=80+x | | 3x^2-5x=40 | | 13(x+1)-2(x-)=1 | | 7p2+63p+126=0 | | 2x+17=3x-19 | | 3x2-1-x=x(3x+1)+5 | | 4(3x+8)-9=2(4x-8)+39 | | 3=w^2-w | | 19x+5=-4x-20 | | 48=x2+x+(x+8) | | 7(x-2)=(5x+4) | | 14−7y=21 | | -7a+9=3a-49 | | -6=5x-22÷-3 |